nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo journalinfonormal searchdiv qikanlogo popupnotification paper paperNew
2025, 02, v.37 7-11
基于纺织图案特征分析的服装生产瑕疵检测技术
基金项目(Foundation): 安徽省高校哲学社科研究重点项目(2023AH051259); 合肥师范学院横向科研项目(HXXM2023016)
邮箱(Email):
DOI: 10.16203/j.cnki.41-1397/n.2025.02.002
摘要:

为提高服装生产中织物瑕疵检测的速度和准确率,提出了一种结合改进深度生成对抗网络(DCGAN)与改进YOLOv5模型的服装生产瑕疵检测(IDPGP)方案。消融实验结果显示,完整IDPGP方案的检测准确率达95%,误检率和漏检率分别控制在3%和2%左右,处理速度约150 ms。在实际应用测试中,该方案对3 000个样本的平均分类准确率接近98%,优于CA-EfficientDet方案的88%。IDPGP方案有助于企业对服装生产质量进行控制,也为服装生产瑕疵检测技术的研发提供了参考。

Abstract:

To improve the speed and accuracy of fabric defect detection in clothing production, a defect detection scheme for IDPGP clothing production combining improved DCGAN and improved YOLOv5 is proposed. The results of the ablation experiment showed that the detection accuracy of the complete IDPGP scheme reached 95%, with false detection rate and missed detection rate controlled at 3% and 2%, respectively. And the processing speed was 150 ms. At the same time, in practical application testing, the average classification accuracy of this scheme for 3 000 samples is close to 98%, which is better than the 88% of the CA-EfficientDet scheme. The IDPGP scheme helps to control the quality of clothing production for enterprises and provides references for the research and development of defect detection technology in clothing production.

参考文献

[1] 邹德华,张宏伟,乔磊,等.基于改进卷积网络的野外复杂背景输电线压接管检测方法[J].湖南电力,2024,44(1):77-84.

[2] 章曙光,刘洋,张文韬,等.改进Tiny-YOLOv3的工业钢材瑕疵检测算法[J].机械设计与制造,2024,399(5):97-101.

[3] ZHANG Y L,WANG Y J,WANG X M.Similarity evaluation model for the internal defect detection of strip steel[J].Baosteel technology research,2024,18(1):8-13.

[4] 刘俊豪,王美林,谢兴,等.基于改进YOLOv5的皮革瑕疵检测算法[J].计算机工程,2023,49(8):240-249.

[5] 卢媛媛,张守京,郑林青,等.基于改进YOLOv5的织物瑕疵检测方法[J].毛纺科技,2024,52(5):80-86.

[6] LIU G H,CHU M X,GONG R F,et al.DLF-YOLOF:an improved YOLOF-based surface defect detection for steel plate[J].Journal of iron and steel research,international,2023,31(2):442-451.

[7] 白明丽,王明文.基于改进Cascade R-CNN的布匹瑕疵检测算法[J].计算机科学,2023,50(增刊1):322-327.

[8] 时造雄,茅正冲.基于改进Yolov5的花色布匹瑕疵检测方法[J].计算机测量与控制,2023,31(4):56-62.

[9] 许玉格,钟铭,吴宗泽,等.基于深度学习的纹理布匹瑕疵检测方法[J].自动化学报,2023,49(4):857-871.

[10] 袁华清,刘桂华,王娅琼.基于改进YOLOv3-tiny的织物表面小目标瑕疵检测[J].制造业自动化,2022,44(12):172-176.

[11] 费利斌,徐洋,余智祺,等.基于改进Faster R-CNN的花色布瑕疵检测算法[J].东华大学学报(自然科学版),2022,48(2):75-80.

[12] 李辉,吕祥聪,申贝贝,等.双路高分辨率转换网络的花色布匹瑕疵检测[J].计算机工程与设计,2023,44(9):2731-2739.

[13] 郭峰,孙小栋,朱启兵,等.基于知识蒸馏的低分辨率陶瓷基板图像瑕疵检测[J].光学精密工程,2023,31(20):3065-3076.

[14] 徐天伦,李波,胡文杰,等.基于CA-EfficientDet的棉布瑕疵检测方法[J].中南民族大学学报(自然科学版),2022,41(2):243-250.

基本信息:

DOI:10.16203/j.cnki.41-1397/n.2025.02.002

中图分类号:TS941.79

引用信息:

[1]胡冰,汪世奎.基于纺织图案特征分析的服装生产瑕疵检测技术[J].河南工程学院学报(自然科学版),2025,37(02):7-11.DOI:10.16203/j.cnki.41-1397/n.2025.02.002.

基金信息:

安徽省高校哲学社科研究重点项目(2023AH051259); 合肥师范学院横向科研项目(HXXM2023016)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文